بررسى رفتار ديناميكى كامپوزيتهاى ثك جهته با استفاده از مدل پلاستيسيته تكى پارامترى

بهنام داودى 1* اشـكان محمود اقدمى 2
1- 1 دانشيار، مهندسى مكانيك، دانشكاه علم و صنعت ايران، تمران
 * تمران، صندوق שׁتى 163-16/6، bdavoodi@mail.iust.ac.ir

Investigation of Dynamic Behavior of Unidirectional Plies Using One Parameter Plastic Model

Behnam Davoodi ${ }^{*}$, Ashkan Mahmoud Aghdami ${ }^{2}$
1- Faculty of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
2- Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran
* P.O.B. 16765-163 Tehran, Iran, bdavoodi@mail.iust.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 05 January 2015
Accepted 11 March 2015
Available Online 18 April 2015

Keywords:

Dynamic behavior
Constitutive equations
Split Hopkinson Pressure Bar test
Viscoplasticity
High strain rate

Abstract

In this article constitutive equations on dynamic behavior of off-axis polymer matrix composites in different strain rates were investigated. Using the Hill Anisotropy and assumptions governing fiber composites, a model was developed to express the dynamic behavior of polymer matrix composites. Using the flow rules and effective stress and assumptions in fiber composites like non plastic behavior of composites in fiber direction, the Hill parameters were omitted and reduced to one parameter namely, a_{66}. This model was called2D one-Parameter Plastic Model (also it can be developed for 3D composite layers). This model was developed for off axis composites as well. For each composite with different fiber directions, effective stress- effective strain was introduced. By choosing the right value for parameter a_{66} by trial aand error, all the stress-strain curves were collapsed into one single curve. Using this model and the experimental static and quasi- static results gathered from different authors (in range of $0.01 \mathrm{~s}^{-1}$), a viscoplastic model was obtained which can predict the polymer composite response both in static and high strain rate tests (between $400 \mathrm{~s}^{-1}$ and $700 \mathrm{~s}^{-1}$). Constant parameters in high strain rates in this model were calculated through extrapolating the data in the static test range. The accuracy of this model was investigated and approved by Split Hopkinson Pressure Bar test. The results showed that the visco plastic model can predict the dynamic response of composite fibers in high strain rates very well.


```
در دسترس بودن، حجم وسيعى از مواد مصرفى در صنعت را به خود
اختصاص داده است. كامیوزیتهاى پایه پليمر بر حسب نوع رزین مصرفى در
دو نوع ترموست و ترمویلاست توليد مىشوند كه كامیوزیتها با رزين
```

1 - مقدمه

 همچچنين دارا بودن نسبت استحكام به وزن بالا، باعث شده است تا اين مواد رفته رفته جاى مواد فلزى را در صنايع مختلف بگيرند. كامپوزيتها عموماً در
$+2 L \tau_{y z}^{2}+2 M \tau_{z x}^{2}+2 N \tau_{x y}^{2}=1$
 مى كنند [11].

3 - مدل پالاستيسيته تك پارامترى
مشابه مدل هيل را مىتوان براى كامپوزيتها كه يك ماده ناهمسانگرد مىباشند بكار گرفت. مىتوان تابع تسليهم كه تابعى از مربعات تنشهها است را در حالت سه بعدى براى كامپوزيتها مطابق رابطه (2) در نظر گرفت:
$2 f\left(\sigma_{i j}\right)=a_{11} \sigma_{11}^{2}+a_{22} \sigma_{22}^{2}+a_{33} \sigma_{33}^{2}+2 a_{12} \sigma_{11} \sigma_{22}$
$+2 a_{13} \sigma_{11} \sigma_{33}+2 a_{23} \sigma_{22} \sigma_{33}+2 a_{44} \sigma_{23}^{2}+2 a_{55} \sigma_{13}^{2}$
$+2 a_{66} \sigma_{12}^{2}=k$
 ميزان ناهمسانگَردى در پلاستيسيته هستند. مقادير آزمايشهاى تجربى به دست آورد.
مطابق رابطه (3) مىتوان با استفاده از قانون شارش، كرنش پاری پاستيكى
جزئى را به عنوان تابعى از تابع پتانسيل مومسان نوشت [12]
$\mathrm{d} \varepsilon_{i j}^{p}=\frac{\partial f}{\partial \sigma_{i j}}$
كه در آن بالانويس p نشاندهنده محدوده پلاستيك است. كار پلاستيكى در واحد حجم توسط رابطه (4) بيان مىشود.
$\mathrm{d} W^{p}=\sigma_{i j} \mathrm{~d} \varepsilon_{i j}^{p}=2 f d \lambda$
تنش موثر در رابطه (5) نشان داده شده است [13]:
$\bar{\sigma}=\sqrt{3 f}$
كرنش موثر پلاستيكى و كار پلاستيكـ را مىتوان طبق رابطه (6) تعريف كرد: $\mathrm{d} W^{p}=\bar{\sigma} d \bar{\varepsilon}^{p}$

با جايگذارى روابط (4) و (5) در (6)، روابط (7) و (8) به صورت زير خواهند
$\mathrm{d} \bar{\varepsilon}^{p}=2 / 3 \bar{\sigma} d \lambda$
$\mathrm{d} \lambda=3 / 2\left(\frac{d \bar{\varepsilon}^{p}}{d \bar{\sigma}}\right)\left(\frac{d \bar{\sigma}}{\bar{\sigma}}\right)$
با مقايسه روابط (2) و (5) مىتوان به رابطه (9) رسيد:
$k=2 / 3 \bar{\sigma}^{2}$
كرنش كل 1 را مىتوان به دو قسمت كرنش الاستيكى $d \epsilon_{i j} d \varepsilon_{i j}^{e}$ و كرنش پلاستيكى dع $\varepsilon_{i j}^{p}$ طبق رابطه (10) تقسيم كرد.
$\mathrm{d} \varepsilon_{i j}=d \varepsilon_{i j}^{e}+d \varepsilon_{i j}^{p}$
الياف رفتار پلاستيك از خود نشان نمىدهند بنابراين مىتوان فرض كرد كه كامیوزيتها در راستاى الياف تا شكست نهايىى رفتار خطى الاستيى از خود نشان مىدهند. بنابراين منطقى است كه فرض شود:
$\mathrm{d} \varepsilon_{11}^{p}=0$
اين فرض باعث ايجاد شرايط زير مىشود كه در رابطه (12) نشان داده شده است:
$a_{11}=a_{12}=a_{13}=0$
فرض بر اين است كه در تابع تسليم هيل هيج انبساط پلاستيكى رخ نمىدهد. بنابراين با در نظر گرفتن رابطه (12) شرايط زير طبق رابطه (13) رخ خواهد داد:
$a_{22}=a_{33}, a_{23}=-a_{22}$
در حالت تنش صفحهاى ${ }^{2}$ و در نظر گرفتن شرايط رابطه (13)، تابع مومسان (2) به رابطه (14) تقليل پیدا مى كند:
$2 f=\sigma_{22}^{2}+2 a_{66} \sigma_{12}^{2}$

2- Plain Stress

ترموست براى تكميل زنجيره مولكولى خود نيازمند پخت در كوره مىباشند.
 بسيارى از اين مواد در معرض موجهاى انفجار و يا بار گذارى ضربهاى بـا بسيار
 كرنشهاى بالا (در حدود 1-1000) براى محققان بسيار مهرم به شمار

 كرنش متوسط را مورد مطالعه قرار داده است. وى نشان داد كا كه كاميوزيتهاى داى داى

 فشارى بالا مورد مطالعه قرار داده و نشان دادهاند كه اين كامیوزيتها حساسيت كمى نسبت به نرخ كرنشهاى بالا از خود نشان مىدهنده. وينسون و همكارانش [5،4] رفتار تعداد زيادى از كامیوزيتها را در نرخ كرنشهای فشارى بالا مورد مطالعه قرار دادند و دادههاى تجربى زياد اديادى را را با توجه مدول و استحكام كامپوزيتها به دست آوردهاند. با اين حال تمام اين كارها باهدف بررسى اثر نرخ كرنش بر استحكام فشارى و رفتار تنش - كرنش انجام
 انجام نشده است. هاردينگَ و همكارانش [6] و ستبو گيلات [7] خصوصيات كامیوزيتهاى تك جهته را در شرايط ضربه كششى مورد مطالعه قرار دادند و خواص مكانيكى كامپوزیت در حالت بارگذارى ضربه كششى را استخرا كردند. رفتار كامپوزيتها تحت نرخ كرنش پايین توسط گيت و سان [8] و و يوون و سان [9] با استفاده از تابع پتانسيل تك پارنی پامترى مورد مطالعه قرار
 مشخص شد و مشاهده كردند كه خواص ويسكوپاستيك را مىتوان با به خوبى
 [10] رفتار ديناميكى كامپوزيتهاى پايه پليمرى را با استفاده از رابطه

جانسون كوک توسعه داده و مدل جديدى را معرفى كردهاند.

 دادههاى تجربى موجود حاصل از آزمايش هاپكينسون 1 كامپيوزيتهای

2 - نظريه مومسانى نا همسانگر دى هيل

هيل ناهمسانگردى مومسان را بدون توجه به منشأ بلور شناختى آن به طور طور

 امتداد نورد كارى ، عرض ورق و ضخامت آن در نظر مى گیرند ارند در اين نظريه فرض مىشود كه استحكامهاى كششى و فشارى در هر ام امتداد مفروض برابرند. معيار تسليم همسانگردى به صورت رابطه (1) است: $2 f\left(\sigma_{i j}\right)=F\left(\sigma_{y}-\sigma_{z}\right)^{2}+G\left(\sigma_{z}-\sigma_{x}\right)^{2}+H\left(\sigma_{x}-\sigma_{y}\right)^{2}$

1- Split Hopkinson Pressure Bar
$\mathrm{d} \bar{\varepsilon}^{p}=\mathrm{d} \varepsilon_{x}^{p} / h(\theta)$
 است. با انتگرال گيرى از رابطه (25) رابطه (26) به شكل زير خواهد بور بود [13] $\bar{\varepsilon}^{p}=\varepsilon_{x}^{p} / h(\theta)$
و با استفاده از روابط (19) و (26) رابطه بين كه از $\sigma_{x}-\varepsilon_{x}^{p}$ كرد. در واقع روابط (27) و (28) به شكل زير خواهند بود [13] $\frac{\mathrm{d} \bar{\sigma}}{\mathrm{d} \bar{\varepsilon}^{p}}=h^{2}(\theta) \frac{\mathrm{d} \sigma_{x}}{\mathrm{~d} \epsilon_{x}^{p}} \sigma_{22}=\sin ^{2} \theta \sigma_{x}$
$\mathrm{d} \lambda=\frac{3}{2} \frac{1}{h^{2}(\theta)} \frac{\mathrm{d} \epsilon_{x}^{p}}{\mathrm{~d} \sigma_{x}} \frac{\mathrm{~d} \sigma_{x}}{\sigma_{x}}$
 عنوان توابعى از $\overline{\text { F }}$

 ديدهشده كه منحنى تنش - كرنش نمونـ مىباشند [13]. بنابراين منحنى تنش موثر - كرنش پلاستيکى كه از نمونههاى
 طورى انتخاب مىشود كه كليه منحنىهاى تست كشش امن خارج از محور نمونهها روى اين منحنى مادر قرار بگيرند. اگر بتوان براى پیدا كرد، در آن صورت مدل پلاستيسيته تك پارامترى معتبر است در عمل ديده شده است كه بر براى
 اين دليل از توابع نمايى مانند رابطه (29) براى تعريف منحنى تنش موثر كرنش پیاستيك موثر استفاده مىشود [14]: $\bar{\varepsilon}^{p}=A \bar{\sigma}^{n}$
ضريبى است كه وابسته به نرخ كرنش است ولى طبق دادههاى تجربى به

 كرنشهاى نشان داده شده است.
 نمونههاى 30 و 45 درجه نشان داده شده است.
 شكل 2 منحنى تجميع شده تنش موثر - كرنش موثر براى كا كاميوزيت شيشه/ ايوكسى 8552 در نرخ كرنش 8

كه در آن ${ }^{\text {a2 }}$ است. كرنش پلاستيك برون صفحهاى به صورت رابطه (15) محاسبه مىشود:
$\mathrm{d} \varepsilon_{33}^{p}=a_{23} \sigma_{22} \mathrm{~d} \lambda$
از تابع پتانسيل مومسان، كرنش پلاستيك جزئى به شكل رابطه (16) استخراج مى گردد:
$\left\{\begin{array}{l}\mathrm{d} \varepsilon_{11}^{p} \\ \mathrm{~d} \varepsilon_{22}^{p} \\ \mathrm{~d} \gamma_{12}^{p}\end{array}\right\}=\left\{\begin{array}{c}0 \\ \sigma_{22} \\ 2 a_{66} \sigma_{12}\end{array}\right\} \mathrm{d} \lambda$
كه در آن ${ }^{\text {ا }}$ كرنش برشی مهرندسى است. تنش موثر مربوطه توسط رابطه (17) بيان مىشود:
$\bar{\sigma}=\left[\frac{3}{2}\left(\sigma_{22}^{2}+2 a_{66} \sigma_{12}^{2}\right)\right]^{1 / 2}$
و كرنش موثر جزئى از روابط (7) و (17) به شكل رابطه (18) به دست مى آيد: $\mathrm{d} \bar{\varepsilon}^{p}=\left[\frac{2}{3}\left(\sigma_{22}^{2}+2 a_{66} \sigma_{12}^{2}\right)\right]^{1 / 2} \mathrm{~d} \lambda$

4 - مدل دو بعدى ويسكوپالاستيسيته

 استاتيكى خارج از محور به دست آورد. محور x در امتداد نيروى كش ام

 (19) نشان داده شده است.
$\sigma_{11}=\cos ^{2} \theta \sigma_{x}$
$\sigma_{22}=\sin ^{2} \theta \sigma_{x}$
$\sigma_{12}=-\sin \theta \cos \theta \sigma_{x}$
(19)

كه در آن
با جايگذارى رابطه (19) در روابط (16) و (17) مىتوان روابط (20-22)
را نتيجه گرفت كه [13]:
$\bar{\sigma}=h(\theta) \sigma_{x}$
$\mathrm{d} \bar{\varepsilon}^{p}=\frac{2}{3} h(\theta) \sigma_{x} \mathrm{~d} \lambda$
$h(\theta)=\left[\frac{3}{2}\left(\sin ^{4} \theta+2 a_{66} \sin ^{2} \theta \cos ^{2} \theta\right)\right]^{1 / 2}$
با تغيير مختصات رابطه (23) به صورت زير خواهد بود [13]:
$\mathrm{d} \varepsilon_{x}^{p}=\cos ^{2} \theta d \varepsilon_{11}^{p}+\sin ^{2} \theta d \varepsilon_{22}^{p}-\frac{1}{2} \sin 2 \theta d \gamma_{12}^{p}$
كه در آن d استفاده از روابط (16)، (19) و (23) مى توان به رابطه (24) رسيد: $d \varepsilon_{x}^{p}=\left[\sin ^{4} \theta+2 a_{66} \sin ^{2} \theta \cos ^{2} \theta\right] \sigma_{x} d \lambda=\frac{2}{3} h^{2}(\theta) \sigma_{x} d \lambda$

با مقايسه روابط (21) و (24) مىتوان رابطه (25) را نتيجه گرفت [13]؛

1- On axis

1E-6 $1 \mathrm{E}-50.00010 .0010 .01 \quad 0.1 \quad 1 \quad 10100$ log (نرخ كرنش پلاستيك موثر)
 براى كاميوزيت شيشه/ ايوكسى 8553 [16]

43/34	$E_{1}(\mathrm{GPa})$
1273	$E_{2}(\mathrm{GPa})$
4/46	$G_{12}(\mathrm{GPa})$
0,29	v_{12}
1/40	a_{66}
$1 / 045>10^{11}$	$x(\mathrm{MPa})^{-n}$
0,14	m
4/0	n

اگر A تابع نمايی از نرخ كرنش موثر پالاستيك در نظر گرفته شود مىتوان رابطه (30) را به شكل زير نوشت: $A=x\left(\bar{\varepsilon}^{P}\right)^{m}$

و مدل ويسكوپالاستيسيته برابر خواهد بود با رابطه (31): $\bar{\varepsilon}^{P}=x\left(\bar{\varepsilon}^{P}\right)^{m}(\bar{\sigma})^{n}$
اكر معادله بنيادى 31 در تمام محدوده نرخ كرنش صدق كند، در آن حالت

 خارج از محور روى دستگاه تست كشش تا نرا نر كرنش

مدول الاستيسيته و مقادير اين ضرايب در جدول 1 دنشان 1 نشان داده شده است

كرنش پايين با دستگاه تست كشش به دست آمده است.

 ايوكسى 8552 به دست آوردند كه در شكل 7 نشان داد داده شده است. بنابراين مىتوان كفت با محاسبه معادله 31 و به دست دست آوردن منحنى

5 - تست هایِكينسون
يكى از پر كاربردترين روشهای انیان انجام تستهاى نرخ كرنش بالا، استفاده از دستگاه فشارى هايكينسون است.

شكل 3 منحنى تجميع شده تنش موثر - كرنش موثر بر براى كاميوزيت شيشه/ ايوكسى

8552 در نرخ كرنش
 شكل 5 منحنى كرنش پاستيك با زمان براى نمونههاى 30 و 45 درجه در نرخ

كرنش
با توجه به شكل 5 ديده مىشود حتى در نرخ كرنشهایى پايیين، مقدار نرخ

 كرنشهاى بالا بيشتر مشهود است. بنابراين میتواي
 تجربى از خود نشان ندهند. اين پديده به صورت ملموسى در شكل 10 ديده شده است.

شكل10 مقايسه منحنىهاى تنش- كرنش در نرخ كرنشهاى بالا و پايين براى نمونه 15 درجه [14]

30 درجه [14]
 شكل DD مقايسه منحنىهاى تنش - كرنش در نرخ كرنشهاى بالا و پاييين براى نمونه 45 درجه [14]

با توجه به شكل 10، همانطور كه انتظار مىرفت در كرنشهاى زير \$1 \$1 به سبب ثابت نبودن نرخ كرنش، اختلافى در مد مدل تئورى با نتايج تجربي دير ديد ديده

 نتايج تجربى به خصوص در نرخ كرنشهاى بالا دارد.

شكل 7 مدل ويسكويالاستيسيته تا محدوده نرخ كرنش دستگاه هاپكينسون براى كاميوزيت شيشه/ ايوكسى 8552 [14]

شكل 8 شماتيك اجزاى تشكيلدهنده دستگاه ميله فشارى هإكينسون [17]

اين دستگاه شامل ميله ضربه، ميله برخورد و ميله انتقال است. نمونه بين ميلههاى برخورد و انتقال قرار داده مىشود. نمونهانى از از اين دستگاه در شكل 8 نشان داده شده است.
در اين تست كل روند تنش/ تغيير شكل نمونه را مىتوان با انجام اندازهگيرى كرنش الاستيك در طول ميلهها به دست آورد. با با اندازهگيرى كرنش

نمونهاى از سيگنال هاى دريافتى در شكل 9 نشان داد 9 داده شده است

 تنش - كرنش حاصل از تست هايكينسون براى نمونههاى 15 13، 30، 45 و 60 درجه در شكلهاى 10 تا 13 نشان داده شده است. نمودار تنش در در دان حالت تست

شبه استاتيك نيز به منظور مقايسه به منحنىها اضافه شده شده است.
[3] A.M.A. El-Habak, Compressive resistance of unidirectional GFRP under high rate of loading. J. Compos. Tech. and Research, 15(4), 311, 1993.
[4] T.J. Frey, J.R. Vinson and I.W. Hall, High strain rate effects on mechanical properties of glass/ polyester and carbon/ aluminum composite materials, AIAA-91-0930-CP, 19, 1991.
[5] J.F. Newill and J.R. Vinson, Some high strain rate effects of composite material, Proceedings of Ninth International Conference on Composite Materials, 5, 269, 1993.
[6] J. Harding and L.M. Welsh, A tensile testing technique for fiber reinforced composites at impact rates of strain, J. Mater. Science, 18, 1810, 1993.
[7] G.H. Staab and A. Gilat, Behavior of angle-ply glass/ epoxy laminates under tensile loading at quasi-static and high rates, Proceedings of the American Society for Composites Seventh Technical Conference, 1041, 1992.
[8] T.S. Gates and C.T. Sun, Elastic/viscoplastic constitutive model for fiber reinforced thermoplastic composites, AIAA Journal; 29:457-63, 1991.
[9] K.J. Yoon and C.T. Sun, Characterization of elastic-viscoplastic properties of an AS4/ PEEK thermoplastic composite, Journal of Composite Materials, 25:1277-98,1991.
[10] M.M. Shokrieh, A.M. Kashani and R. Mosalmani, Introducing a new model to predict the mechanical behavior of polymers, $22^{\text {nd }}$ annual conference on mechanical engineering, Shahid chamran University, Ahvvaz, Iran, 2014.
[11] R. Hill, P. Roy, Mathematical Theory of Plasticity, Sco. London, 193A p.21, 1948.
[12] W.F. Hosford and R.M. Caddel, Metal Forming Third Edition, Cambridge University Press.
[13] C.T. Sun and J.L. Chen, A Simple Flow Rule for Characterizing Nonlinear Behavior of Fiber Composites, Journal of Composite Materials 23: 1009, 1989.
[14] J. Tsai and C.T. Sun, Constitutive model for high strain rate response of polymeric composites, Composites Science and Technology 62, 12891297, 2002.
[15] S.V. Thiruppukuzhi and C.T. Sun, Testing and modeling high strain rate behavior of polymeric composites, Composites Part B 29B, 535-546, 1998.
[16] S.V. Thiruppukuzhi and C.T. Sun, Testing and modeling high strain rate behavior of polymeric composites, J. Compos. Mater.
[17] Society of Plastic Engineers, 2015/ 17/ 01, http:// www. 4spepro. org/
[18] ASM Metal Handbooks, Volume 8, Mechanical Testing and Evaluation.

6 - نتيجه كيرى

 پلاستيسيته تك پارامترى در حالت تنش صفحهاى براى كامیوزيتهای تک جهته ارائه شد. با تعريف تنش موثر و كرنش موثر، نمودارهاى تنش ور كر كرنش در زواياى مختلف الياف در نمودار واحدى به نام تنش موثر و كرنش ونر مونر
 كرنشهاى بالا با نتايج حاصله از آزمايشهاى محاى محقان كه با با استفاده از دستگاه هاپگينسون انجام شده بود مقايسه گرديد و تطابق خوبى بای بين نتايج تجربى و مدل موجود مشاهده شد.

$$
7 \text { - مراجع }
$$

[1] P. Kumar, And B.D. Agarwal, Dynamic compressive behavior of unidirectional GFRP for various fiber orientations, Material Letters, 4(2), 111, 1986.
[2] A.M.A. El-Habak., Mechanical behavior of woven glass fiber reinforced composites under impact compression load. Composites, 22(2), 129, 1991.

